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Abstract
The influence of the Fano effect and the Kondo and antiferromagnetic (AF)
correlations on the transport properties through a double quantum dot (DQD)
structure is investigated by the finite-U slave-boson mean field method. In
the singly-occupied regime, with weak AF correlation, the Fano–Kondo effect
greatly reduces the conductance G no matter whether the transmissivity through
the direct channel is high or low, whereas the strong parity splitting leads to
the blockade of the channel through the DQDs. At the particle–hole symmetric
point, when the Kondo and AF correlations are comparable with each other,
their competition results in a resonant conductance peak, which is accompanied
with a transmission zero due to the Fano effect. This peak-zero structure
is a counterpart of the characteristic asymmetric line shape and governs the
variational trend of G with the energy levels on dots. The qualitative relations
between the positions of those peaks and zeros with the transmissivity through
the direct channel are obtained via a fitting method.

1. Introduction

The interplay between quantum interference and the electronic correlation is important in
mesoscopic physics. When a discrete energy level is embedded in a continuum energy state,
the quantum interference between two configurations—one through the resonant level resulting
from the discrete level, and the other directly through the continuum—yields a characteristic
asymmetric line shape in the transition rate when the system evolves from an arbitrary initial
state. This phenomenon, known as the Fano effect, was proposed first in atomic physics [1]
and is observed in many other fields, including condensed matter physics [2–4]. Because of its
tunability, quantum dot (QD) systems have attracted a lot of attention. When a dot is connected
to leads, the coupling between the localized spin on the dot and conduction electrons leads to the
Kondo correlation, which is described by an energy scale TK, the so-called Kondo temperature.
When a dot is in the Kondo regime [5–9], a spin singlet state is formed by the localized spin
and conduction electrons. This singlet state yields the Abrikosov–Suhl resonance and plays an
important role in the electronic transport. When the Fano effect is introduced in a QD system,
the so-called Fano–Kondo effect is found [10–13].
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Figure 1. Schematic illustration of the DQD structure.

If double quantum dots (DQDs) [14–17, 21] are coupled with each other by a
tunnelling matrix element td, the Coulomb interaction U in the dots yields an effective
antiferromagnetic (AF) coupling JM = √

(2td)2 + (U/2)2 − U/2 (or ∼4t2
d /U if td � U ).

This coupling tends to create a singlet state between the localized spins on the two dots. When
the two dots are connected to the left and right leads in a ‘lead–dot–dot–lead’ series, the
competition between the Kondo and AF correlations results in a resonant conductance peak at
JM ∼ TK in the half-filled case [16, 17, 21], whereas in the limit JM � TK and td � U/4, the
conductance G approaches zero. Now, a problem is posed naturally: when the Fano effect is
introduced in a DQD system, how does the interplay between the Fano effect and competition
between the Kondo and AF correlations affect the transport properties?

In the present paper, we want to answer the following four questions: (i) Does the
Fano–Kondo effect still exist if the AF correlation is introduced? (ii) If it does, what are
its characteristics in the DQD structure? (iii) Is there a relation exhibiting asymmetric line
shape, characterizing the existence of the Fano effect? And (iv) if there is, what are its
properties? To this purpose, we assume two QDs (left and right) are tunnelling coupled with
each other. A left (right) lead is connected to the left (right) dot, and the two leads are also
directly connected by tr (cf the schematic illustration of the structure in figure 1). To treat the
electronic interaction, the finite-U slave boson mean field theory (f-U SBMFT) [18, 19, 21]
is adopted. Due to its finite-U character, the AF coupling JM can be introduced implicitly,
unlike in the infinite-U method, where JM is introduced artificially [15]. In the singly-occupied
regime, when JM � TK, the Fano–Kondo effect plays an important role, which greatly reduces
G no matter whether tr is strong or weak, whereas with td � U/4, the strong parity splitting
results in the blockade of the path through the DQDs, and the quantum interference effect
disappears. At the particle–hole symmetric point, the competition between the Kondo and AF
correlations still leads to a resonant peak at JM ∼ TK as in previous research [16, 17]. But
due to the Fano effect, the resonant peak is always accompanied by a transmission zero. This
peak-zero structure is a counterpart of the asymmetric line shapes usually found in systems
with the Fano effect. By a fitting method, the qualitative relations between tr and the positions
of those peaks and zeros are found. They are ∼ exp(−btr) and ∼1/tr, respectively.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are illustrated. In section 3, the numerical results and a discussion of them
are presented. A brief summary is given in section 4.

2. Model and formulae

In the present paper, we investigate the influence of the Fano effect and the competition
between the Kondo and AF correlations on the transport properties through a DQD system at
zero temperature. We assume that two dots, labelled as ‘L’ and ‘R’, are coupled by a tunnelling
matrix element td. A left (right) lead is connected to the dot ‘L’ (‘R’) via hopping integral t (L)

L

(t (R)
L ) and meanwhile, the two leads are coupled directly to each other via a tunnelling matrix
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element tr. The two QDs are taken as Anderson impurities, each of which has one single-
particle energy level and an on-site Coulomb interaction. The two leads are described as two
semi-infinite one-dimensional (1D) chains. Then, this mesoscopic system can be described by
the following 1D tight-binding Hamiltonian:

H = HL + HD + HT, (1)

where HL, HD and HT are the Hamiltonians of leads, dots and the coupling between dots and
leads. They are

HL = −t

[ −2∑
i=−∞,σ

+
∞∑

i=1,σ

]
(c†

iσ ci+1σ + H.c.), (2)

HD =
∑

α=L,R

(∑
σ

εασ c†
ασ cασ + Uαnα↑nα↓

)
− td

∑
σ

(c†
Lσ cRσ + H.c.), (3)

HT = −
∑

σ

(t (L)
L c†

−1σ cLσ + t (R)
L c†

1σ cRσ + trc
†
1σ c−1σ + H.c.). (4)

Here the spin index σ =↑ or ↓. εασ and Uα are the energy level and the Coulomb repulsion
on the dot ‘α’, respectively. In the present paper, we consider the left–right symmetric situation
and assume spin degeneracy: ε = εLσ = εRσ , U = UL = UR and tL = t (L)

L = t (R)
L .

If one dot with energy level ε and Coulomb repulsion U is connected to the left and right
leads with the hopping integral tL, the Kondo correlation energy, or the Kondo temperature,
can be expressed at zero temperature as TK = U

√
JK

2π
exp(−π/JK), with JK = −2U�

ε(ε+U)
[22].

Here, the hybridization strength � = πρ(εF)t2
L, with ρ(εF) the density of states at the Fermi

energy. The correlation length of a spin singlet at zero temperature ξK = h̄vF/TK, with vF

the Fermi velocity. In the thermodynamic limit, � = 2t2
L/t and ξK = 2t/TK at εF = 0 [23].

In what follows, we always set εF = 0. On the other hand, if t (L)
L is set as zero in the

Hamiltonian (1), electrons can only tunnel through the structure via the direct channel. At this
time, the transmissivity is |Tr|2 = 4/(tr/t + t/tr)2.

The f-U SBMFT of Kotliar and Ruckenstein (KR) [18, 21] is adopted to treat the electronic
correlation. It is a powerful nonperturbative tool to study the strongly correlated fermion
system, and is not limited to the infinite-U case [24]. In the DQD structure, the AF coupling JM

is introduced implicitly by this method as a function of U and td, but not as an artificial parameter
in the Hamiltonian [15]. In the framework of this approach, eight auxiliary boson fields eα , pασ

and dα are introduced, which act as projection operators onto the empty, singly occupied and
doubly occupied electronic states at the dot ‘α’, respectively. To eliminate the unphysical states,
six constraints are imposed:

∑
σ p†

ασ pασ + e†
αeα + d†

αdα = 1 and c†
ασ cασ = p†

ασ pασ + d†
αdα. To

obtain the correct result in the noninteracting limit, the fermion operator cασ should be replaced
by cασ zασ , with zασ = (1 − d†

αdα − p†
ασ pασ )−1/2(e†

α pασ + p†
ασ̄ dα)(1 − e†

αeα − p†
ασ̄ pασ̄ )−1/2.

Therefore the Hamiltonian (1) can be replaced by the following effective Hamiltonian:

Heff = HL + H̃D + H̃T +
∑

α=L,R

{
λ(1)

α

(∑
σ

p†
ασ pασ + e†

αeα + d†
αdα − 1

)

+
∑

σ

λ(2)
ασ (c†

ασ cασ − p†
ασ pασ − d†

αdα)

}
, (5)

where the six constraints are incorporated by the six Lagrange multipliers λ(1)
α and λ(2)

ασ . The
original HD and HT are changed to

H̃D =
∑

α=L,R

(∑
σ

εασ c†
ασ cασ + Uαd†

αdα

)
− td

∑
σ

(z†
Lσ c†

Lσ cRσ zRσ + H.c.) (6)
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and

H̃T = −
∑

σ

(tLc†
−1σ cLσ zLσ + tLc†

1σ cRσ zRσ + trc
†
1σ c−1σ + H.c.), (7)

whereas HL remains unchanged.
To solve the effective Hamiltonian (5), we can integrate out the fermionic variables from

the corresponding effective action, write down the saddle-point free-energy functional, and
then determine the expectation values of the boson fields by minimization of the saddle-point
free-energy functional at zero temperature as KR did in their original paper [18]. But, this
approach is equivalent to a mean-field approximation in which the slave boson fields are first
replaced by their expectation values, then the values of eα , pασ , dα, λ(1)

α and λ(2)
ασ are obtained

by minimization of the ground state energy E0 of the essentially noninteracting effective
Hamiltonian (5) with respect to these parameters [19]. This leads to a set of self-consistent
equations [19, 21]. Because of the left–right symmetry and the spin degeneracy, only five
variational parameters need to be determined. They are e, p, d , λ(1) and λ(2). To construct the
five self-consistent equations,we need knowledge of the ground state |0〉. This is obtained from
the calculation of a cluster, at the centre of which is located the DQD structure. The single-
particle eigenstates can be calculated by direct numerical diagonalization, and the ground state
|0〉 is constructed by adding electrons to the lowest unoccupied levels one by one up to the
Fermi level. If the cluster size is much larger than ξK, the results obtained from the cluster
calculation can be looked upon as those of the original system [25, 26].

As soon as the five variational parameters are obtained, the conductance G through the
structure at zero temperature can be obtained from the Landauer–Büttiker’s (LB) formula
G = |T (εF)|2, because the effective Hamiltonian (5) is essentially noninteracting [27]. Here
T (εF) is the transmission coefficient of an incident electron with the Fermi energy. In writing
the above equation, the spin index and the unit 2e2/h are omitted. The applicability of the LB
formula would not be destroyed by the inclusion of the direct hopping between the left and right
leads or the external applied ac voltage [20]. For continuum models, some authors adopted the
LB formula combined with the slave-boson mean-field method to calculate G via the Green
function technique [12, 21]. But for a tight-binding Hamiltonian, the transmission coefficient
T can be calculated more straightforwardly via the transfer matrix (TM) method [28, 29]. The
transfer matrices corresponding to the effective noninteracting Hamiltonian (5) hold the same
forms as those corresponding to the original Hamiltonian (1) when the Coulomb interaction U
is set as 0 in equation (1). In the mean-field approximation, the electron–electron interaction
is represented in the transfer matrices by the replacement of the undressed parameters by the
renormalized ones: ε̃ = ε + λ(2), t̃d = tdz2 and t̃L = tLz. This situation is similar to that in the
conductance calculation via the Green function technique [12, 21],

3. Results and discussion

The variations of G with ε for different td are plotted in figures 2(a)–(c). We first give our
attention to the results with tr = 0, which are given in figure 2(a), and compare them with
the exact numeric results. For any td, the G–ε curves are symmetrical with ε = −U/2. For
td = 0.01 and 0.1 (here, we set t = 1), a plateau is found in the singly-occupied regime
−U < ε < 0, and its height value with td = 0.1 is close to unity, whereas that with td = 0.01
is close to zero. For td = 0.2, 0.4 and 0.8, the plateau splits into two resonant peaks, and with
td increased, the splitting is strengthened and the G value at ε = −U/2 decreases. For any td,
in the empty and doubly-occupied regimes, G always approaches zero. In our calculations,
U = 1.4 and tL = 0.35, so TK and ξK are 0.0280 and 71.5, respectively, at the particle–hole
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Figure 2. G–ε curves with different td for tr = 0 (a), 1 (b) and 0.5 (c). (d) n–ε curves with different
td for tr = 0. In this figure, the curves with the same texture have the same td. The other parameters
are U = 1.4 and tL = 0.35.

Table 1. Table of JM = √
(2td)2 + (U/2)2 − U/2 with U = 1.4. When tL = 0.35, TK = 0.0280,

which is almost identical to the JM at td = 0.1.

td 0.01 0.1 0.12 0.2 0.4 0.8
JM 2.86 × 10−4 0.0280 0.0400 0.106 0.363 1.05

symmetric point ε = −U/2. Here the lattice constant a = 1. To guarantee good convergence,
the cluster size is set as 800 with td < 0.1, 400 with 0.1 � td < 0.2 and 200 with 0.2 � td in
the determination of the variational parameters.

In figure 2(d), the variation of the electronic occupation number n on each dot with ε is
plotted with tr = 0. For td = 0.01, JM � TK, the Kondo effect prevails, and in the singly-
occupied regime, n varies slowly. The values of JM for a series of td are given in table 1. For
td = 0.1, JM 	 TK, and the structure is close to the resonant point. For td = 0.2, JM > TK,
and the AF correlation dominates. But in both of these two cases, the n–ε curves are close to
that for td = 0.01. As a comparison, when td = 0.4 and 0.8, the n–ε curves become flat in the
singly-occupied regime. This phenomenon is more remarkable for td = 0.8. This is because
when td > U/4, the parity splitting leads to the double occupancy on the bonding orbital of the
two dots, which tends to block the electronic transport. In figure 3, the G–td curve with tr = 0
is given by the solid curve at ε = −U/2. With td → 0 and ∞, G always approaches zero. A
resonant peak emerges at tR

d = 0.12. The corresponding JM = 0.04 ∼ TK. All of these are
consistent with the exact numeric results [16, 17], and although it is a mean-field method, the
f-U SBMFT grasps the basic physics of the DQD structure. Now, we turn our attention to the
situation with tr �= 0.

In figures 2(b) and (c), we plot the G–ε curves for different td with tr = 1 and 0.5,
respectively. But here, we do not give the corresponding n–ε curves, because the introduction
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Figure 3. G–td curves with ε = −U/2 for tr = 0 (solid), 0.5 (dashed) and 1 (dotted).

of tr only has small influence on the n–ε curves. This demonstrates that the direct tunnelling
cannot eliminate the Kondo or AF correlations in the system and their competition still plays an
important role. But the direct tunnelling introduces the quantum interference between different
channels. As in the single QD situation [10, 11], G always approaches |Tr|2 when |ε| > U .
(Here, |Tr|2 = 0.64 for tr = 0.5.) For tr = 0.5, in the G–ε curves with td = 0.4 and 0.8 there
are two resonant peaks and two transmission zeros, but in the curves with td = 0.1 and 0.2
only two resonant peaks appear, and with td = 0.01 neither resonant peak nor transmission
zero emerges. The peak and/or zero structures can only appear with certain td, and if they
appear, they appear in a pair and are located at the symmetric positions with respect to the
point ε = −U/2. This leads to symmetric G–ε curves. The same character is also found for
tr = 1, but here, the resonant peaks are merged into the tails with unit conductance. This is
entirely different from the single QD system, where one resonant peak and one transmission
zero always appear simultaneously and they are located at the opposite sides of the particle–hole
symmetric point, which leads to asymmetric G–ε curves.

To find the underlying rule governing the appearance of peaks and zeros, we also present
the corresponding G–td curves with ε = −U/2 for tr = 0.5 and 1 in figure 3. They are
plotted with dashed and dotted curves, respectively. For any tr , G approaches zero if td is
close to zero. This is a clear demonstration of the Fano–Kondo effect: if td = 0, the two dots
are decoupled from each other and can be looked upon as side-coupled to a 1D chain, and G
through this structure is zero in the Kondo regime no matter whether the direct tunnelling is
strong or weak [12]. When td is introduced, the Kondo correlation still dominates and that
kind of Fano–Kondo effect plays a major role if JM � TK. This accounts for the appearance
of the low plateau in the singly-occupied regime with td = 0.01 in figures 2(b) and (c). With
JM ∼ TK, the competition between the Kondo and AF correlations leads to a resonant peak
in the G–td curves. But the most striking change on a G–td curve caused by the introduction
of tr is the appearance of a transmission zero accompanied with the resonant peak. This is
a demonstration of the interplay between the Fano effect and the competition of the Kondo
and AF correlations. The peak-zero structure is very similar to the asymmetric line shapes
usually found in other systems with Fano effect. If the positions of peaks and zeros are set as
tR
d and tD

d , respectively, in the G–ε curves (cf figure 2), only when td > tR(D)

d do two resonant
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Figure 4. Relations of tR
d and tD

d with tr ((a) and (b)) and with |Tr|2 ((c) and (d)). The data obtained
from the f-U SBMFT are represented as filled rectangles and the solid lines correspond to the fitting
functions.

peaks (transmission zeros) appear in symmetrical positions with respect to ε = −U/2. In
the G–td curves, with td further increased, G approaches |Tr|2, the transmissivity through the
direct channel. In this regime, the strong parity splitting leads to the double occupancy on
the bonding orbital. This results in the blockade of the channel through the DQDs, and the
quantum interference disappears.

Variation of tr only slightly changes tR
d : it is 0.12 for tr = 0 whereas it is 0.061 for tr = 1.

But the change of tD
d is great: for tr = 0, it can be set as infinity, which is contrasted with the

corresponding value 0.12 for tr = 1. For any tr, tD
d is always larger than tR

d . This explains
why the two resonant peaks always appear on the outside of the two transmission zeros in the
G–ε curves. Figures 4(a) and (b) give the variation relations of tR

d and tD
d with tr, where our

f-U SBMFT data are represented as filled rectangles, and the solid lines are the corresponding
fitting functions. They are tR

d = a exp(−btr) and tD
d = c/tr, respectively. The three parameters

can be determined as a = 0.119, b = 0.72 and c = 0.123. Here a and c are very close to each
other. Figures 4(c) and (d) present the same results as (a) and (b) but with tr replaced by |Tr|2
since |Tr|2 is the experimentally measurable value. In the limit of |Tr|2 approaching zero, tR

d

and tD
d exhibit the following behaviours: tD

d ∼ 1/
√|Tr|2, and ln(tR

d ) ∼ −√|Tr|2. However, in
the limit of |Tr|2 approaching unity, tD

d ∼ √|Tr|2 and ln(tR
d ) ∼ −1/

√|Tr|2. Of course, these
results are obtained from the f-U SBMFT. The accurate values of those fitting parameters can
only be determined by more powerful methods, but we hope that the qualitative relations found
by our calculation can be verified by experiments.

In the above theoretical calculation, left–right symmetry is assumed: εL = εR. When an
energy difference δ = εL − εR is introduced, the left–right asymmetry appears besides the
asymmetry caused by the parity splitting. As in the case of the parity splitting, when δ < U/4,
the influence of the left–right asymmetry is negligible. Only when δ > U/4 do remarkable
differences appear between the structures with and without left–right symmetry.
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4. Summary

In summary, we have investigated the influence of the Fano effect and the Kondo and AF
correlations on the transport properties through a DQD structure by the f-U SBMFT. When
JM � TK, the Fano–Kondo effect plays an important role, which greatly reduces G in the
singly-occupied regime no matter whether tr is strong or weak. In contrast, when td � U/4,
the channel through the DQDs is blocked because of parity splitting, and G is just |Tr|2.
From the variation of G at the particle–hole symmetric point with td, it can be found that the
competition between the Kondo and AF correlations leads to a resonant peak at JM ∼ TK

as in previous research [16, 17]. But due to the Fano effect, the resonant peak is always
accompanied by a transmission zero. This peak-zero structure is similar to the asymmetric
line shapes usually found in systems with the Fano effect. This structure also governs the basic
shape of the G–ε curves. By a fitting method, the qualitative relations of tR

d and tD
d with tr are

found. They are tR
d ∼ exp(−btr) and tD

d ∼ 1/tr, respectively. These two relations are also
expressed with tr replaced by |Tr|2.
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[2] Göres J et al 2000 Phys. Rev. B 62 2188
[3] Zacharia I G et al 2001 Phys. Rev. B 64 155311
[4] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[5] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirev U and Kaster M A 1998 Nature 391

156
[6] Cronewett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540
[7] Simmel F, Blick R H, Kotthaus U P, Wegsheider W and Blichler M 1999 Phys. Rev. Lett. 83 804
[8] van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S and Kouwenhoven L P 2000 Science

289 2105
[9] Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779

[10] Hofstetter W, König J and Shoeller H 2001 Phys. Rev. Lett. 87 156803
[11] Bulka B R and Stefanski P 2001 Phys. Rev. Lett. 86 5128
[12] Kang K, Cho S Y, Kim J J and Shin S C 2001 Phys. Rev. B 63 113304
[13] Franco R, Figueira M S and Anda E V 2003 Phys. Rev. B 67 155301
[14] Aono T, Eto M and Kawamura K 1998 J. Phys. Soc. Japan 67 1860
[15] Georges A and Meir Y 1999 Phys. Rev. Lett. 82 3508
[16] Büsser C A, Anda E V, Lima A L, Davidovich M A and Chiappe G 2000 Phys. Rev. B 62 9907
[17] Izumida W and Sakai O 2000 Phys. Rev. B 62 10260
[18] Kotliar G and Ruckenstein A E 1986 Phys. Rev. Lett. 57 1362
[19] Dorin V and Schlottmann P 1993 Phys. Rev. B 47 5095
[20] Ma Z, Zhu Y, Li X-Q, Lin T-H and Su Z-B 2004 Phys. Rev. B 69 045302
[21] Dong B and Lei X L 2002 Phys. Rev. B 65 241304
[22] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[23] Kang K and Shin S-C 2000 Phys. Rev. Lett. 85 5619
[24] Coleman P 1984 Phys. Rev. B 29 3035
[25] Affleck I and Simon P 2001 Phys. Rev. Lett. 86 2854
[26] Hu H, Zhang G-M and Yu L 2001 Phys. Rev. Lett. 86 5558
[27] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[28] Simon P and Affleck I 2003 Phys. Rev. B 68 115304
[29] Xiong S J and Evangelou S N 1995 Phys. Rev. B 52 13079


